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Vortex disruption by magnetohydrodynamic feedback
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In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic
field to form strong current sheets on their edges. Associated with these current sheets are
magnetic stresses, which are subsequently released through reconnection, leading to vortex
disruption, and possibly even destruction. This disruption phenomenon is investigated here
in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics.
We derive a simple order of magnitude estimate for the magnetic stresses—and thus
the degree of disruption—that depends on the strength of the background magnetic field
(measured by the parameter M , a ratio between the Alfvén speed and a typical flow speed)
and on the magnetic diffusivity (measured by the magnetic Reynolds number Rm). The
resulting estimate suggests that significant disruption occurs when M2Rm = O(1). To
test our prediction, we analyze direct numerical simulations of vortices generated by the
breakup of unstable shear flows with an initially weak background magnetic field. Using
the Okubo-Weiss vortex coherence criterion, we introduce a vortex disruption measure, and
show that it is consistent with our predicted scaling, for vortices generated by instabilities
of both a shear layer and a jet.
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I. INTRODUCTION

The interaction of vortices with a magnetic field is a fundamental process in astrophysical
magnetohydrodynamics (MHD). Such vortices could be generated, for example, by convection [1,2]
or by the breakup of unstable shear flows [3–6]. In the absence of magnetic fields, vortices can be
coherent, long-lived structures, particularly in two-dimensional or quasi-two-dimensional systems
[e.g., [7]]. However, in the presence of a background magnetic field, various studies have shown
how vortices can be disrupted, by which we mean either a reduction in strength or spatial coherence,
or completely destroyed [8–16]. Here we show explicitly how this disruption depends on both the
field strength and on the magnetic Reynolds number Rm.

Astrophysical fluid flows are invariably characterized by extremely high values of Rm. Perhaps
the most important consequence of this is that weak large-scale fields can be stretched by the
flow to generate strong small-scale fields, with the amplification being some positive power of Rm
[17]. Once the small-scale fields are dynamically significant, the resulting evolution is essentially
magnetohydrodynamic—rather than hydrodynamic—leading to dramatically different characteris-
tics, despite the large-scale magnetic field being very weak. Such behavior has been identified in the
suppression of turbulent transport [18–24], in the suppression of jets in β-plane turbulence [25], and
in the inhibition of large-scale vortex formation in rapidly rotating convection [26].

The vortex disruption investigated here, which builds on Ref. [27], and can be contrasted with
Ref. [28], depends on just such high Rm dynamics. Given that many astrophysical flows are rotating
and stratified, such that the vortices are essentially two-dimensional, it is natural to investigate vortex
disruption in the context of two-dimensional MHD. To quantify when a weak large-scale field can
become dynamically significant, we first construct a scaling argument for a quite general setting
with a single vortex. We first estimate the amplification of the large-scale field due to stretching
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on the edge of the vortex, following the kinematic arguments of Weiss [29], and then estimate the
dynamical feedback on the vorticity. This leads to an explicit prediction for vortex disruption in
terms of the strength of the large-scale field and Rm.

To investigate vortex disruption in more realistic settings it is necessary to perform direct
numerical simulations of the governing MHD equations for freely evolving flows. The vortices
may be imposed via the initial conditions or, alternatively, may emerge from the development of
an instability of a basic state. Here we adopt the latter approach by considering the instability to
two-dimensional perturbations of two representative incompressible planar shear flows—a shear
layer and a jet—with an aligned magnetic field. This typically leads to the generation of a periodic
array of vortices, each of which may be susceptible to disruption by the magnetic field. Any other
potential disruption mechanism that requires stratification (e.g., convective instability in the vortex
core due to overturning density surfaces [4,5]) or a third spatial dimension (e.g., elliptic instability
[30,31] or the magnetoelliptic instability [32,33]) is ruled out in our numerical simulations, thereby
isolating the magnetic field as the sole agent of vortex disruption.

Since magnetic dissipation is crucial in determining the eventual strength of the small-scale
fields, and hence the efficacy of the vortex disruption mechanism, it is important to consider how
this is implemented numerically. To have well-defined values of Rm, we carry out simulations with
explicit Ohmic dissipation, represented by a Laplacian, with resolution to the dissipative scale. This
is in contrast to most other studies of vortex disruption in MHD, in which dissipation is performed
numerically at the grid scale, with no explicit diffusion operator [8–10,12–15].

The plan of the article is as follows. Section II contains the scaling argument for the disruption of
a single vortex. The mathematical and numerical formulation of the shear flow problem is given in
Sec. III. Section IV contains the numerical simulations of vortex disruption; a measure of disruption
based on the Okubo-Weiss criterion [34,35] is introduced and is used to test the main prediction of
Sec. II. Armed with the results of the numerical simulations, in Sec. V we examine in detail the scaling
arguments outlined in Sec. II. In Sec. VI we look at the implications for the large-scale dynamics
of the shear flow instability, with particular focus on the mean flow. We conclude in Sec. VII and
briefly discuss possible implications of vortex disruption for the transition to turbulence and mixing.

II. THEORETICAL ESTIMATE OF VORTEX DISRUPTION

Following Weiss [29], we consider an idealized configuration in which a single vortex evolves
kinematically in an initially uniform magnetic field of strength B0. On an advective timescale, the
fluid motion stretches the weak background field on the edges of the vortex until reconnection of field
lines occurs; subsequently, the magnetic field lines within the vortex reconnect and are expelled to
the edges of the vortex, a phenomenon known as flux expulsion. Weiss was particularly interested in
determining the scalings of the flux-expelled state, as were Moffatt and Kamkar [36]. Here, however,
we are interested in the peak field at the point of reconnection at the edges of the vortex (Weiss’s B1).
Since the curved field lines have associated with them magnetic stresses directed toward the vortex
center, then if B1 is sufficiently strong, the induced stresses will be significant, and we might expect
vortex disruption. We are then able to provide an estimate for the dependence of disruption on B0

and the magnetic diffusivity η, using an essentially kinematic argument; put another way, the theory
here estimates when the kinematic approach breaks down and there must be significant dynamical
feedback. This approach is similar in spirit to that of Galloway and coworkers [37,38], who considered
the dynamical feedback of flux ropes formed in magnetoconvection. More recently, Gilbert et al.
[28] also considered the dynamical feedback on a vortex, in an idealized, quasilinear setting in which
only the axisymmetric component of the Lorentz force was retained, thus constraining the vortex
flow to remain axisymmetric; this distinguishes it from the fully nonlinear problem considered here.

The magnetic field is governed by the induction equation

∂ B
∂t

= ∇ × (u × B) + η∇2 B. (1)
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We suppose that the vortex has characteristic length Lv and velocity Uv . The initial large-scale field
B0 is amplified to a stronger small-scale field of strength b and with a small characteristic scale �.
Flux conservation across the vortex implies that

b� = B0Lv. (2)

Following the physical arguments of Weiss [29], field amplification is arrested when line stretching
and magnetic diffusion are in balance, i.e., when |B · ∇u| ∼ η|∇2 B|, or UvB0/Lv ∼ ηb/�2.
Combining this expression with (2) gives

b ∼
(

UvLv

η

)1/3

B0. (3)

The same estimate was obtained via alternative means in Ref. [36].
At this stage of the evolution, the magnetic stresses resulting from the Lorentz force may be

estimated. We are interested in the magnetic tension, which may be decomposed as

1

μ0
B · ∇ B = −|B|2

μ0rc

en + d

ds

( |B|2
2μ0

)
et , (4)

where μ0 is the permeability of free space, rc is the local radius of curvature, s is the arc length, and
en and et are, respectively, the local unit vectors normal and tangential to the magnetic field. For a
field expelled to the edge of the vortex, |B| ∼ b, rc ∼ Lv , and d/ds ∼ L−1

v ; hence,

1

μ0
|B · ∇ B| ∼ b2

μ0Lv

. (5)

To estimate when the magnetic tension will be dynamically important in the evolution of the vortex,
we consider the vorticity equation

∂ω

∂t
+ u · ∇ω − ω · ∇u = 1

μ0ρ
∇ × (B · ∇ B) + ν∇2ω, (6)

where ρ is the constant density of the fluid. The curl of the magnetic tension involves a transverse
derivative of the tangential component, and using expression (5), thus scales as b2/(μ0�Lv). We may
characterize the vortex disruption regime as one in which the curl of the magnetic tension competes
with the advection of vorticity, thereby leading to the scaling

1

μ0ρ

b2

�Lv

∼ Uv

Lv

�̃v, (7)

where �̃v ∼ Uv/Lv is the vorticity. Note that here we are assuming that disruption of the vortex, if
it occurs, does so on a much faster timescale than that for reaching the flux-expelled state. Using
expressions (2) and (3), estimate (7) may be written as

B2
0

/
(μ0ρ)

η
∼ �̃v. (8)

Expression (8) is the dimensional estimate for vortex disruption in terms of the characteristic
scales of the vortex. Typically, however, there are other velocity and length scales, U0 and L0,
that are used to characterize the flow. Retaining B0 as the characteristic field strength, the relevant
nondimensional parameters are

M = B0/
√

μ0ρ

U0
, Rm = U0L0

η
, (9)
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where M , the ratio of the Alfvén speed to the characteristic flow speed, is a measure of field strength.
Expression (8) may thus be written as

M2Rm ∼ �v, (10)

where

�v = Uv/Lv

U0/L0
(11)

is the nondimensional magnitude of the vortex. In many settings, Lv and Uv will be comparable with
L0 and U0, in which case the nondimensional estimate for vortex disruption becomes

M2Rm ∼ 1. (12)

The scaling provided by expression (12), first given in Ref. [27], will be tested against simulation
data presented in Sec. IV. The arguments concerning length scales, leading to the estimate (8), will
be revisited in detail in Sec. V.

III. MATHEMATICAL AND NUMERICAL FORMULATION

To examine vortex disruption in detail, we consider the evolution of unstable shear flows of
the form u = U (y)ex , in the presence of a uniform background magnetic field B = B0ex , in two-
dimensional incompressible MHD. Since both u and B are divergence-free, they may be expressed
in terms of a streamfunction and magnetic potential, defined by

u = (u,v,0) = ∇ × (ψez), B = ∇ × (Aez). (13)

The z components of the vorticity and current are then given by ω = −∇2ψ and μ0j = −∇2A,
respectively. On scaling velocity with a representative flow speed U0, length with a characteristic
scale L0, time with L0/U0, and magnetic field with B0, the nondimensional governing equations
become

∂ω

∂t
− J (ψ,ω) − M2J (A,∇2A) = 1

Re
∇2ω, (14a)

∂A

∂t
− J (ψ,A) = 1

Rm
∇2A, (14b)

−∇2ψ = ω, (14c)

where

J (f,g) = ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
(15)

is the Jacobian operator. The nondimensional parameters are M and Rm, as defined in Eq. (9), and
the Reynolds number

Re = U0L0

ν
, (16)

where ν is the kinematic viscosity. In nondimensional form, the two flow profiles we shall consider
are U (y) = tanh(y) and U (y) = sech2(y), which we shall refer to as the shear layer and the jet,
respectively.

We further decompose the variables in terms of a basic state and a perturbation, i.e.,

ψ = �(y) + ψ̃, A = y + Ã, ω = −U ′(y) + ω̃, (17)
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where a prime denotes differentiation with respect to y. The system of Eqs. (14) then takes the
equivalent formulation (after dropping the tildes on the perturbation terms)

∂ω

∂t
+ U

∂ω

∂x
− U ′′ ∂ψ

∂x
− J (ψ,ω) − M2

[
−∂∇2A

∂x
+ J (A,∇2A)

]
= 1

Re
∇2ω − 1

Re
U ′′′, (18a)

∂A

∂t
+ U

∂A

∂x
− ∂ψ

∂x
− J (ψ,A) = 1

Rm
∇2A, (18b)

−∇2ψ = ω. (18c)

We adopt a domain that is periodic in x and bounded by impermeable, perfectly conducting, and
stress-free walls at y = ±Ly , leading to the boundary conditions

ψ = 0, A = 0, ω = 0 on y = ±Ly. (19)

The total energy (the sum of the kinetic energy Ek and the magnetic energy Em) decays as

d

dt
(Ek + Em) = − 1

Re

∫∫
ω2 dxdy − 1

Rm

∫∫
j 2 dxdy, (20)

where Ek and Em are the domain integrals of |u|2/2 and M2|B|2/2, respectively.
The channel length is chosen to be some integer multiple of the most unstable wavelength from

linear theory, i.e., Lx = 2nπ/αc, where αc is the most unstable wave number of the associated profiles
(αc = 0.44 for the shear layer and αc = 0.90 for the jet [39]). We take n = 1 for the shear layer and
n = 2 for the jet, giving domains of roughly equal size. To trigger the instability, we initialize with
a perturbation for which the primary instability at wave number αc has fixed amplitude and phase,
with other permitted wave numbers αi having smaller amplitude and random phase. Specifically, we
take

(ω,A) =
⎡
⎣10−3 cos(αcx) + 10−5

�Nx/3�∑
i �=n

γi cos(αix − σiLx)

⎤
⎦e−y2

, (21)

where γi and σi are randomly generated numbers in [−1,1], and �·� is the floor function. There is
a well-defined linear phase of instability, during which the most unstable eigenfunction naturally
emerges. Simulations were run up to t = 150, allowing for an extended nonlinear phase and the
possibility of vortex disruption; with this choice we find that taking Ly = 10 ensures that finite
boundary effects remain negligible.

We solve the system of Eqs. (18) by a Fourier-Chebyshev pseudospectral method, using the
standard Fourier collocation points in x and Gauss-Lobatto points in y, and employing the appropriate
Fast Fourier Transforms. A semi-implicit treatment in time is employed, treating the dissipation terms
implicitly and the nonlinear terms explicitly. Time-stepping is performed by a third-order accurate,
variable time-step, Adams-Bashforth/Backward-Difference scheme, with the step size set by the
maximum time step allowed for a fixed CFL number (here taken to be 0.2, which is near marginal
for numerical stability). The equations are solved in spectral space using a fast Helmholtz solver
[40], and all runs are dealiazed using Orszag’s 2/3-rule [41] (see Ref. [42] or [43] for further details
about the numerical methods employed).

Our simulations are run-down experiments for the evolution of instabilities on a decaying
background state. To alleviate diffusive effects before the perturbations reach finite amplitude, we
remove the diffusion of the basic state (the U ′′′ term in Eq. (18a)) until the perturbation is sufficiently
large (here measured by the energy possessed by the kx �= 0 Fourier modes). Even so, we found
it necessary to take Re � 500 to produce runs that are not too diffusive and that are qualitatively
similar to the runs at higher Re. Since the regime estimate (12) naturally suggests a dependence on
M and Rm, we fix Re = 500 and vary the other two parameters in the bulk of this work. The required
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spatial resolution depends on Rm: the number of x gridpoints Nx and y gridpoints Ny were taken to
be Nx×Ny = 512×1024 for Rm = 1000, 384×768 for Rm = 750, and 256×512 otherwise.

IV. VORTEX DISRUPTION

In this section, we describe the results of direct numerical simulations of freely evolving vortices
generated by shear instabilities with a background magnetic field. To measure the disruption of the
vortices, we follow Okubo [34] and Weiss [35] in considering the quantity W (x,y,t), defined by

W =
(

∂u

∂x
− ∂v

∂y

)2

+
(

∂v

∂x
+ ∂u

∂y

)2

−
(

∂v

∂x
− ∂u

∂y

)2

. (22)

The bracketed terms are, respectively, the normal and shear components of the rate of strain, and
the vorticity; W thus effectively measures the relative dominance of the strain over the vorticity. A
vortex is defined as a region in which W is sufficiently negative. For example, a popular approach is
to calculate the standard deviation σ of W and to classify vortical regions by W < −0.2σ . Though
by no means the only way to identify a vortex [e.g., [44–46]], it is one of the simpler measures that
have been employed previously in a geophysical setting [e.g., [47,48]].

Here we are interested in measuring vortex disruption relative to the purely hydrodynamic
evolution. We thus introduce a vortex disruption parameter �(t), defined by

� = 1 −
∫
A

W dx dy∫
A

WHD dx dy
, (23)

where WHD is the value of W for the hydrodynamic case. The area A is some portion of physical
space where there is deemed to be a vortex, as discussed in more detail below. When � = 0, the
vortex is not disrupted, whereas � = 1 implies total disruption.

A. Hyperbolic-tangent shear layer

We first consider the disruption of vortices arising from the instability of the shear layer U (y) =
tanh(y). Linear instabilities of this profile are well documented for both the hydrodynamic [39]
and MHD cases, where linear stability is guaranteed when M � 1 [49,50]. The nonlinear MHD
evolution has been studied by numerous authors [e.g., [8–10,12,14,16]]. To provide a good coverage
of (M,Rm) space, a total of fifty simulations with parameter values given in Table I were performed,
at five values of Rm and ten values of M , where the values of M were chosen to lie well below the
stabilising value of M (M ≈ 0.8 for α = 0.44). The initial magnetic to kinetic energy ratio is given
by 2M2Ly/(

∫
U (y)2 dy) ≈ (10/9)M2; this ratio is less than 1/90 for the values of M considered

here.
We consider a domain supporting a single wavelength of the optimum linear instability mode.

Figure 1 shows snapshots of the vorticity and magnetic field lines from three control runs at
Rm = 500. These display the representative behaviors for three dynamical regimes: undisturbed
(M = 0.01), mildly disrupted (M = 0.03), and severely disrupted (M = 0.05). For M = 0.01, the
vorticity is of one sign, and the shear layer rolls up into a vortex. The magnetic stresses are clearly not
strong enough to alter the macrodynamics in any significant way. The vortex evolution is essentially
hydrodynamic [7], accompanied by magnetic flux expulsion from the vortex. For M = 0.03, we

TABLE I. Parameter values employed for the shear layer simulations.

Parameter Values Marker/color in Fig. 4

M 0.01–0.1, 0.01 spacing + ◦ ∗ × � �  , in ascending order
Rm 50, 250, 500, 750, 1000 black, red, green, blue, magenta
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FIG. 1. Snapshots of (a) vorticity and (b) magnetic field lines for the shear layer at different field strengths
(for Rm = Re = 500), shown for the central half of the channel (−Ly/2 � y � Ly/2).

observe the formation of regions of positive vorticity. The magnetic field is no longer confined
to kinematic boundary layers, and the resulting stresses are strong enough to modify the resulting
evolution to a certain extent. That said, the vortex is only mildly disrupted and maintains its integrity;
there is only a slight decrease of vortex size by the end of the simulation at t = 150. For M = 0.05,
the evolution is radically different to the other two cases, with a significant disruption of the vortex
and an unconfined magnetic field. By the end of the simulation, only small remnants of the parent
vortex persist; vorticity filaments and a complex magnetic field are now the dominant features in the
domain.

Vortex disruption also has a signature in the time evolution of the kinetic and magnetic energies.
Shown in Fig. 2 are time series for the three control runs of the mean kinetic energy Ek and mean
magnetic energy Em (defined as the energy content in the kx = 0 Fourier mode), along with the
perturbation energies E′

k and E′
m (defined as the energy content in the remaining Fourier modes).

The evolution is similar up to t ≈ 60 (cf. Fig. 1), at which time the field amplification is close to
being arrested by diffusion; the scalings (2) and (3) then apply for the small-scale field, implying
E′

m ∼ b2lLv and Em ∼ B2
0L2

0, so that E′
m/Em ∼ Rm1/3 ≈ 8 here, consistent with Fig. 2. However,

for t � 80, vortex disruption (if it occurs) changes the evolution of the energy. For the undisrupted
case (M = 0.01), the evolution becomes one of complete flux expulsion (see Fig. 1), with E′

m

decreasing to less than Em. (This is different to the well-known theory of Ref. [29], in which
E′

m ∼ Rm1/2Em in the flux-expelled state, but that kinematic single-vortex theory may not apply
to this dynamic regime with a periodic array of vortices and remote boundaries.) For the strongly
disrupted case (M = 0.05), we enter a different regime, with E′

m staying close to Em throughout the
evolution. This regime with persistent small spatial scales results in stronger dissipation: whereas
the total dissipation is small and comparable with that of the hydrodynamic case for M = 0.01 and
0.03, it is about three times higher when M = 0.05. Further, even though Em � Ek throughout the
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(a)

(b)

(c)

FIG. 2. Time series of the energies (blue = kinetic; red = magnetic; solid = perturbation state; dashed =
mean state; gray solid line = total energy) for the shear layer at different field strengths (for Rm = Re = 500).
The curve for mean kinetic energy largely lies on top of the curve for the total energy.

evolution for all three cases (i.e., weak large-scale magnetic field), E′
m becomes comparable with E′

k

when there is vortex disruption, reflecting the dynamical importance of the small-scale magnetic field.
To calculate the vortex disruption parameter �, defined by Eq. (23), we first need to evaluate

W (x,y,t). This is shown in Fig. 3(a) for the three control runs at t = 150, highlighting those regions
where either strain or vorticity dominates. Adopting the convention of identifying vortical regions
as those where W < −0.2σ results in the plots of Fig. 3(b). For M = 0.01 and M = 0.03, this leads
to the identification of a well-defined coherent vortex. For the severely disrupted case of M = 0.05
on the other hand, disruption results in a small parent vortex, as well as disconnected vortices and
filaments. Our interest is in the disruption to the parent vortex, and so to employ the disruption
measure �, we need to ignore these resulting byproducts. To address this, a further filter is applied,
which selects the largest connected region originating from the center of the parent vortex (which
in this case is well defined since the resulting instability has zero phase speed, so the single vortex
formed is stationary). The W field is digitized, with all points where W < −0.2σ set to one, and
all other points set to zero. The MATLAB command bwlabel is then applied to the resulting data
array to select the connected regions; the connected region originating from the center of the vortex
is then chosen as the region A for the calculation of � (see Fig. 3(c)).

The quantity � is computed at t = 150 for all simulations detailed in Table I. To test the vortex
prediction (12), in Fig. 4 we show � versus M2Rm, from which it can be seen that there is a
reassuring collapse of the data. The most important point to note is that for M2Rm � 1.5, the
vortices are deemed to have been completely disrupted. This is in agreement with (12), which
predicts disruption for M2Rm ∼ 1. Further, for M2Rm � 1 we would expect � to be monotonically
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−0.8

0

0.8

FIG. 3. Okubo-Weiss field for the shear layer corresponding to the t = 150 cases shown in Fig. 1. (a) The
full W field given in Eq. (22); (b) the field keeping only W < −0.2σ ; (c) a further filtered field keeping only
the largest connected region originating from the center of the parent vortex.

increasing with M2Rm. Indeed, on performing a regression on the data in the interval 0.1 � � � 0.9,
we find that � ∼ (M2Rm)

1.10
(although a different definition of � could lead to a different positive

exponent).
Our focus here has been on the transition from an essentially kinematic regime to a dynamic

regime when M2 ∼ Rm−1 � 1. If M2 is increased beyond Rm−1, then severe vortex disruption
continues for a while, as implied by Fig. 4. However, if M becomes sufficiently large (M � 0.35
here), then the magnetic field is strong enough to suppress vortex formation completely.

B. Bickley jet

We now consider the disruption of vortices arising from the instability of the Bickley jet, U (y) =
sech2(y). Linear instabilities of this profile in the hydrodynamic setting are again well documented
[39]; there are odd and even modes of instability, with the latter being the most unstable at wave

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

M 2Rm

Δ

FIG. 4. � vs. M2Rm for the shear layer (colors, varying Rm; markers, varying M; see Table I for marker
and color values). The dotted line is obtained from a regression of the data. For display purposes, data beyond
M2Rm = 5 are omitted.
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TABLE II. Parameter values employed for the jet simulations.

Parameter Values Marker/color in Fig. 8

M 0.005–0.05, 0.005 spacing + ◦ ∗ × � �  , in ascending order
Rm 50, 250, 500, 750, 1000 black, red, green, blue, magenta

number αc = 0.90. In the MHD setting, linear stability is guaranteed for this configuration when
M � 0.5 [50]. This jet profile is known to break up into vortices if the initial field is not so strong
that it suppresses the primary hydrodynamic instability; depending on the parameter values, the
resulting vortices have been observed to suffer disruption by the magnetic field [11,13,15].

The optimum wave number αc = 0.90 is roughly twice that of the shear layer case. To employ
the same resolution as the shear layer case, we consider a channel length that is twice this optimum
wavelength. Fifty simulations with parameter values given in Table II were carried out, with the
values of M again chosen to lie well below the stabilising value of M (M ≈ 0.3 for α = 0.90,
implying lower values of M than for the shear layer). For the Bickley jet, the initial magnetic to
kinetic energy ratio is given by 2M2Ly/(

∫
U (y)2 dy) ≈ 15M2; this ratio is less than 3/80 for the

values of M considered here.
Three control runs are again chosen, with Rm = 500 and M = 0.005, 0.015, and 0.025. Figure 5

shows snapshots of the vorticity and magnetic field lines for the three representative cases. For
M = 0.005, the evolution is essentially hydrodynamic, with a meandering of the jet before it breaks
into two pairs of vortices; MHD feedback is weak and there are no visible disruptions to the vortices.
For M = 0.015, the vortices at t = 100 are slightly distorted by the released magnetic stresses;
disruption, however, is not strong enough to destroy the vortices. For M = 0.025, the induced
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FIG. 5. Snapshots of (a) vorticity and (b) magnetic field lines for the jet at different field strengths (for
Rm = Re = 500), shown for the central half of the channel (−Ly/2 � y � Ly/2).
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FIG. 6. Time series of the energies (blue = kinetic; red = magnetic; solid = perturbation state; dashed =
mean state; gray solid line = total energy) for the jet at different field strengths (for Rm = Re = 500).

magnetic stresses are strong enough to distort the vortices significantly; indeed, the vortex cores
have almost disappeared by t = 150.

Figure 6 shows the time series of the energies for the three control runs. The relative sizes of Ek ,
E′

k , Em, and E′
m follow the same patterns as for the shear layer. However, in contrast to the shear

layer, here the total dissipation is actually lower for the severe vortex disruption case (M = 0.025)
than for the undisrupted case (M = 0.005). As shown in Fig. 5, although the small-scale structures
in the vorticity and magnetic field are initially amplified by severe disruption (t = 100), which
enhances the dissipation, for longer times they are suppressed (t = 150).

We calculate � using a similar procedure as for the shear layer. However, since four vortices are
generated by the instability in this configuration, to calculate the area A for the integral Eq. (23)
we now select the four largest connected components of W (x,y), accounting for periodicity. The
procedure is illustrated for the three control runs in Fig. 7, at t = 150. When performed for all 50
simulations given in Table II, we obtain the plot of � (at t = 150) versus M2Rm given in Fig. 8.
It shows the same general characteristics as for the shear layer: there is an approximately linear
increase of � with M2Rm (� ∼ (M2Rm)0.94) up to a critical value, given by M2Rm ≈ 0.3, above
which there is complete vortex disruption (� ≈ 1). Note that for both the shear layer and the jet, the
critical value of M2Rm for complete vortex disruption is of order unity, although the precise value
varies from case to case.

V. SCALING OF THE LORENTZ FORCE

The derivation of expression (12), the criterion for vortex disruption, requires estimates of the
strength and spatial scale of the expelled magnetic field, of the magnitude of the associated Lorentz
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FIG. 7. Okubo-Weiss field for the jet corresponding to the t = 150 cases shown in Fig. 5. (a) The full W

field given in Eq. (22); (b) the field keeping only W < −0.2σ ; (c) a further filtered field keeping only the four
largest connected components, accounting for periodicity. The color scale is saturated to show the small values
when M = 0.025.

force and of the competing hydrodynamical forces. In Sec. II, our argument was presented in terms
of force balances in the three-dimensional vorticity and induction equations. The phenomena of
flux expulsion and subsequent vortex disruption are, however, primarily two-dimensional—and our
numerical simulations are strictly two-dimensional. It is therefore instructive to revisit the scaling
arguments in terms of the nondimensional variables ψ and A, as employed in Sec. III, and in the
light of the results of the numerical simulations, described in Sec. IV.

From the nondimensional vorticity Eq. (14a) (or, alternatively, Eq. (18a)), it is clear that the
magnetic field becomes dynamically significant once M2J (A,∇2A) is comparable in magnitude to
J (ψ,ω). Our arguments in Sec. II focus on what might be considered as the dynamical breakdown
of the kinematic regime. At this point, the velocity and vorticity are still large scale, leading to
an unambiguous estimate of the magnitude of J (ψ,ω). By contrast, the expelled magnetic field
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Δ

FIG. 8. � vs. M2Rm for the jet (colors, varying Rm; markers, varying M; see Table II for marker and color
values). The dotted line is obtained from a regression of the data. For display purposes, data beyond M2Rm = 1
are omitted.
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FIG. 9. Decomposition of the components in J (A,∇2A), for the shear layer simulation M = 0.05,
Rm = 500, at t = 55 [cf. Fig. 1(a)], shown for the central half of the channel (−Ly/2 � y � Ly/2).

varies on both large and small scales; determining the size of the J (A,∇2A) term is thus not so
straightforward.

As explained in Sec. II, flux expulsion leads to magnetic field being confined to a thin strip of
width l, along which there are variations in strength on a lengthscale Lv � l. We therefore need to
understand how the Jacobian

J (A,∇2A) = ∂(A,∇2A)

∂(x,y)
= ∂A

∂x

∂

∂y
∇2A − ∂A

∂y

∂

∂x
∇2A (24)

scales with l and Lv . Unless the field is strictly aligned with one of the x and y axes, then each of
the two terms on the right-hand side of Eq. (24) will scale as A2/l4. One might therefore be tempted
to assume that

J (A,∇2A) ∼ A2

l4
; (25)

however, this significantly overestimates the magnitude of the Jacobian. To see why this is the case,
it is instructive to express J (A,∇2A) in general two-dimensional orthogonal curvilinear coordinates
(x1,x2) with scale factors (h1,h2), namely

J (A,∇2A) = 1

h1h2

(
∂A

∂x1

∂∇2A

∂x2
− ∂A

∂x2

∂∇2A

∂x1

)
, with

∇2A = 1

h1h2

(
∂

∂x1

(
h2

h1

∂A

∂x1

)
+ ∂

∂x2

(
h1

h2

∂A

∂x2

))
. (26)

Now consider an arbitrary point on the (curved) flux strip, and let (x1,x2) be a local orthogonal
curvilinear coordinate system in the plane of the strip, with x1 and x2 pointing, respectively, across
and along the strip. Then, with h−1

1 ∂/∂x1 ∼ l−1 and h−1
2 ∂/∂x2 ∼ L−1

v , we have ∇2A ∼ A/l2, and

J (A,∇2A) ∼ A2

l3Lv

, (27)

a reduction of O(l/Lv) in comparison with the naive estimate (25).
To test our theoretical predictions quantitatively, we use numerical simulations of the shear layer

at a time when strong field has formed at the edge of the vortex, but before disruption occurs. We have
chosen t = 55 (cf. Fig. 1), although the results are a little sensitive to this choice. Confirmation that,
in Cartesian coordinates, significant cancellation between the two component terms of J (A,∇2A)
does indeed take place is provided by Fig. 9, which shows, individually, the magnitudes of the two
terms in Eq. (24) for one specific case, together with their much smaller difference.

To quantify this reduction across a wide parameter space, we evaluate

δ = max |J (A,∇2A)|
max |(∂A/∂x)(∂∇2A/∂y)| . (28)

113701-13



J. MAK, S. D. GRIFFITHS, AND D. W. HUGHES

0 0.02 0.04 0.06
0

0.002

0.004

0.006

0.008

0.01

0.012

∼ ( Lv)0.930

Lv

δ

(a)

0 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

∼ Rm1.111

Rm

m
ax

(J
(A

,∇
2
A

))

(b)

FIG. 10. (a) Plot of δ as defined in Eq. (28) against �/Lv , for the t = 55 simulation data of the shear layer
across all values of M and Rm (colors, varying Rm; markers, varying M; see Table I for marker and color
values); the Rm = 50 data are not plotted. (b) Plot of the mean value of max J (A,∇2A) against Rm, where the
average is taken over the ten values of M . Both dotted lines are obtained from a regression of the data with the
Rm = 50 data omitted.

If J (A,∇2A) ∼ A2/�3Lv , as in (27), but the individual components scale as A2/�4, as in (25), we
should have a reduction

δ ∼ �

Lv

. (29)

For configurations such as shown in Fig. 9 we can independently determine δ, �, and Lv . The length
scale � is diagnosed by taking a transect at y = 0 of |(∂A/∂x)(∂∇2A/∂y)| and calculating the half
width of the single maximum. The length scale Lv is identified as the mean extent of the vortex as
identified by the Okubo-Weiss criterion. Figure 10(a) shows δ as a function of �/Lv for 40 runs with
Rm � 250. A fitting of the logarithm of this data shows that δ scales as (�/Lv)0.930, consistent with
the prediction in (29). (Note that we have omitted the Rm = 50 points; unsurprisingly, for such a
low value of Rm, they do not obey the same relation between δ and �/Lv .)

We are ultimately interested in how J (A,∇2A) at this time scales with Rm, so we now test the
scaling (27) across a wide parameter space. Note that A and Lv are of order unity by the assumed
nondimensionalization, while the nondimensional versions of (2) and (3) are b� ∼ 1 and b ∼ Rm1/3,
so that � ∼ Rm−1/3. Our scaling (27) thus implies J (A,∇2A) ∼ Rm at this time. Figure 10(b) shows
the mean value of max J (A,∇2A), where the average is taken over all ten values of M at each
Rm (see Table I). Omitting the Rm = 50 data, a fitting of the logarithm of this data shows that
max J (A,∇2A) scales as Rm1.111, consistent with the prediction in (27).

The ordering (27) is essentially equivalent to the ordering (5), although the details of the derivation
are slightly different; it thus leads to the estimate (12) for vortex disruption, namely M2Rm ∼ 1. Were
the Lorentz force stronger than estimated by (27), in particular, if its strength were given by (25),
then a weaker background field would lead to vortex disruption, determined by M2Rm4/3 ∼ 1.
Conversely, if the cancellation in expression (24) were extremely strong (i.e., O(l2/L2

v)), leading
to an ordering J (A,∇2A) ∼ A2/l2L2

v , then the threshold for the dynamic regime would satisfy
M2Rm2/3 ∼ 1. It is of interest to note that it is this latter scaling that is identified by Gilbert et al.
[28] as the onset of the dynamic regime in their quasi-linear model of flux expulsion.
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VI. DYNAMICAL PHENOMENA

We believe that the dynamics underlying the vortex disruption, leading to the estimate (12),
is quite general. However, in any given setting, there could be interesting dynamical implications
beyond those of the disruption itself. Here, we spell out some of the specific implications for the
nonlinear evolution of shear flow instabilities.

A. Mean flow changes

A quantity of considerable importance in the instability of shear flows is the mean flow, defined
here to be

u(y,t) = 1

Lx

∫ Lx

0
u(x,y,t) dx, (30)

where Lx is the channel length. In combination with the magnetic field, the mean flow determines
the strength of the initial linear instability, and its evolution with time shows how the nonlinear
dynamics act to mix momentum in the cross-stream direction.

Snapshots of u for the shear layer and the jet are shown in Fig. 11, for each of the three control
runs. For the undisturbed cases (essentially hydrodynamic) in Figs. 11(a) and 11(d), the shear is
reduced around the center of the channel as the instability reaches finite amplitude, but the mean
flow remains largely unchanged thereafter. For the mildly disrupted cases in Figs. 11(b) and 11(e),
the behavior is similar (i.e., essentially hydrodynamic) near the center of the channel (|y| � 2), but
beyond that there is an additional broadening of the mean flow when vortex disruption sets in, for
t � 100. However, for the severely disrupted cases in Figs. 11(c) and 11(f), the mean flow evolution
is substantially different, with mixing of momentum over a wider region (about twice as wide as
for the hydrodynamic case), leaving smaller shears near the center of the channel. This is consistent
with previous studies [e.g., [16]].

It is possible to quantify the influence of vortex disruption on the evolving mean flow by measuring
the width of the mean flow changes relative to those of the hydrodynamic case [27]. This analysis
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FIG. 11. Snapshots of u for the shear layer (a, b, c) and jet (d, e, f) at different field strengths (for
Rm = Re = 500). Some of the curves lie on top of each other and are indistinguishable.
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reveals how the width of the changes to the mean flow increases with M2Rm, with substantial
widening when M2Rm ∼ 1—i.e., within the vortex disruption regime.

B. Secondary hydrodynamic instabilities

It is well known that vortices generated during the finite-amplitude stage of shear instabilities
can be unstable to a range of secondary hydrodynamic instabilities. Our numerical simulations were
designed to suppress such secondary hydrodynamic instabilities, so that only magnetic disruption of
the vortices could occur. However, within our two-dimensional system, there is the possibility of the
subharmonic pairing instability [51–53], which requires two or more vortices in the along-stream
direction. For our shear layer simulations, this was completely suppressed, since only a single vortex
was generated within the domain. For our jet simulations, where two vortices were generated in
the along-stream direction, early signatures of the subharmonic pairing instability may be seen in
Fig. 5 for the undisturbed case with M = 0.005, and to a lesser extent in the mildly disrupted case
with M = 0.015. However, in the strongly disrupted case with M = 0.025, the magnetic disruption
occurs on a faster timescale than the pairing instability, and the disrupted vortices show no signs
of pairing. An interesting alternative scenario is when magnetic disruption does not act on the
primary vortices, but in which repeated subharmonic pairings eventually lead to a large vortex that
does suffer magnetic disruption. Although there is evidence of this occurring in studies of longer
channels [14], we did not find this in sample simulations where the domain was extended to allow
for eight wavelengths of the primary instability.

For different flow configurations, other hydrodynamic secondary instabilities could occur. With
a third spatial dimension, there is the possibility of either hyperbolic instabilities on the thin braids
between vortices or ellipitical instabilities on the vortex cores, as discussed in Ref. [54], for example.
With density stratification, there is also the possibility of convective type instabilities associated with
density overturning in the vortex cores, which compete with various other modes [4,5]. However,
such secondary instabilities are all excluded here through our choice of a two-dimensional system of
constant density. In three-dimensional or stratified flows, whether or not such secondary instabilities
would act before magnetic disruption of the parent vortices is an open question.

VII. CONCLUSION AND DISCUSSIONS

Of great astrophysical significance is the idea that a very weak large-scale magnetic field, i.e.,
a field with energy much smaller than the kinetic energy of the flow in question, can still have
dynamically significant consequences. Small-scale, typically turbulent, motions distort the large-
scale field to generate small-scale magnetic fields, amplifying the field strength by some positive
power of the magnetic Reynolds number Rm. Since the defining characteristic of astrophysical
plasmas is that Rm � 1, this implies that weak large-scale magnetic fields cannot simply be ignored.
This phenomenon has been explored for the suppression of both turbulent magnetic diffusivity
[17,18,23,24] and the turbulent α-effect of mean field electrodynamics [19–22], the inhibition of jet
formation in β-plane turbulence [25], and the suppression of large-scale vortices in rapidly rotating
convection [26]. Here we have explored how, in another broad class of problems—the disruption of
vortices by a weak large-scale field—the same general dynamical processes can occur. By adopting
the arguments of Ref. [29], we are able to estimate the magnitude of the induced magnetic stresses
arising from the stretching of magnetic field lines by the swirling fluid motion, noting that there is a
nontrivial cancellation in the curl of the magnetic tension, as supported by numerical and theoretical
analyses. Vortices are disrupted when these magnetic stresses released are sufficiently large; this
occurs when M2Rm ∼ 1, where M2 measures the energy of the large-scale field relative to the
kinetic energy. Thus, when Rm � 1, vortex disruption occurs for M � 1.

The estimate for vortex disruption, M2Rm ∼ 1, is widely applicable for vortex dynamics, however
the vortices may arise. Here we test the criterion in detail by considering one of the most important
means of vortex generation—the nonlinear development of shear instabilities. We focus on two-
dimensional, homogeneous, incompressible MHD, considering in detail two prototypical shear
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flows (the hyperbolic tangent shear layer and the Bickley jet) with a weak background magnetic
field. The instability of both these flows leads to a periodic array of vortices, which can be prone
to magnetic disruption. We first identify coherent vortices by the Okubo-Weiss procedure, which
provides a simple definition of vortices as those regions where vorticity dominates over strain, and
then construct a measure of disruption � by comparison with the purely hydrodynamic evolution.
By performing fifty simulations to cover a range of M (0.01 � M � 0.1 for the shear layer and
0.005 � M � 0.05 for the jet) and Rm (50 � Rm � 1000) at Re = 500, we are able to investigate
the dependence of � on both M and Rm. For both shear flows, we find an approximate linear increase
of � with M2Rm up to a critical value of M2Rm of order unity, followed by a sharp transition to
a regime in which � ≈ 1, denoting total disruption of the vortices. These numerical results are
in excellent agreement with the theoretical estimate. Our theoretical ideas are also supported by
inspection of the energy time series, which show that disruption is characterized by an ordering
in which the energies of the perturbed magnetic field, the mean field, and the perturbed flow are
comparable (but all much less than the kinetic energy of the unperturbed shear flows).

The disruption estimate M2Rm ∼ 1, first derived in Ref. [27], is in contrast to the result more
recently reported in Ref. [28]. In that work, which considers the dynamical feedback of a vortex
in a magnetic field, in a quasilinear setting assuming azimuthal symmetry, the breakdown of the
kinematic argument, and thus the regime where vortex disruption may be expected to take place,
occurs when M2Rm2/3 ∼ 1 in our notation. Since our set of simulation data takes Rm values between
50 and 1000, distinguishing between the asymptotic scalings M2Rm and M2Rm2/3 is difficult. That
said, it is interesting to note, following our line of argument in Sec. V, that if the curl of the magnetic
tension were to scale as b2/L2

v , rather than b2/�Lv as we suggest, then the resulting disruption
estimate would indeed be M2Rm2/3 ∼ 1. Given that both our theoretical and numerical analyses
support the scaling of the curl of the magnetic tension as b2/�Lv , the difference in the asymptotic
scaling for disruption is perhaps attributable to differences between a fully nonlinear system and a
quasilinear system with imposed symmetry.

Further, the vortex disruption estimate depends crucially on a balance between advection and
dissipation of small-scale field. Since dissipation is represented by a Laplacian operator in the
induction equation, estimate (12) involves an explicit dependence on Rm. This dependence is
captured by our numerical approach, which uses a Laplacian diffusion operator with resolution
down to the dissipation scale. Numerical schemes with alternative (non-Laplacian) prescriptions for
the dissipation would presumably realize vortex disruption in a somewhat different way.

The notion of vortex disruption has some interesting astrophysical implications. Since the derived
estimate for disruption is M2Rm ∼ 1, and Rm is typically extremely large in astrophysical systems,
vortex disruption should be a robust dynamical feature. If vortex disruption does occur, it is likely to
lead to mixing of quantities such as angular momentum, heat and passive scalars, with implications
for the large-scale angular velocity, temperature and chemical composition. Of particular note is that
in systems such as the solar tachocline, constrained by stable stratification, many of the standard
mixing scenarios do not occur. However, provided there are vortices, we have shown that their
interaction with a magnetic field can provide an alternative route to mixing. The theoretical disruption
estimate (12) assumes that Rm � 1 and implicitly assumes that the flow is smooth on the small scales
of the field; this equates to an assumption that the magnetic Prandtl number Pm = ν/η = Rm/Re �
O(1). Whereas this does indeed hold in the interstellar medium, in stellar interiors Pm � 1. Although
one could envisage vortex disruption by a similar physical mechanism in this regime, the line of
argument leading to a disruption estimate would need to be modified. Furthermore, the testing of
any such hypothesis in the regime Re � Rm � 1 is currently computationally unattainable.
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